Impact of Regional Development Programs on Hungarian LAU1 Regions

Zoltán Bakucs and Imre Fertő

EAAE2017 Parma, Italy

Zoltán Bakucs

Motivation – Rural Development

- 75% of the territory of OECD countries is classified as rural, on average 25% of the total population live in these areas
- growth in agricultural productivity fall in both agricultural employment and the weight of agriculture to national economies
- the **modern CAP** (AGENDA 2000) shifted the support system towards a more integrated rural development policy. Aims:
 - to promote a viable and liveable rural environment rather than maximize agricultural output
 - creation or preservation of a number of important values such as landscape, traditions-customs, social structures and environmental protection.
- pre-condition: the existence of a sufficiently large active rural population
- NMS are more rural than OMS, with a more predominant income gap between rural and urban areas.

Motivation – Rural Development in Hungary

 \bigcirc

- Hungary: **93,000** km², approx. pop: of **9.8** million
- HU is in Central Europe, a EU member state since 2004
- the economic output of rural Hungary is 50% less than the national average, and 3x less than that of the predominantly urban output
- Within the EU, Hungary is one of the biggest beneficiaries of RDP payments – at least when per capita transfers are considered.
- 2007 2013 programming period: EUR 3.8 billion
- 2014 2020 programming period EUR 4.2 billion (of which EUR 740 million in the form of national co-funding) is foreseen.

Have these significant amounts of RDP funds that have been distributed had any measurable impact?

Hungary in the European Union

Source: NuclearVacuum (File:Location European nation states.svg) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

Hungary: NUTS 1 regions

Source: I, Peyerk [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)

Hungary: NUTS 2 regions

Source: I, Peyerk [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)

Hungary: NUTS 3 regions

Source: I, Peyerk [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)

RDP support data

Variable	Obs.	Mean	Std. Dev.	Min.	Max.
T. Subsidy	1,044	780185.1	814366.4	-36435	7111930
(th. HUF [*])		(2977 th.)			
Subsidy/cap	1,044	19.707	17.077	-2.106	126.25
(th. HUF)		(75.21)			
Subsidy/km ²	1,044	1386.61	1209.213	-95.581	13203.6
(th. HUF)		(5.29)			

Nominal prices, 2008 – 2013 period, * **EUR 1= 304** (as of August 2017).

RDP support data

Year	T. Subsidy	Subsidy/cap	Subsidy/km ²	
	(th. HUF [*])	(th. HUF)	(th. HUF)	
2008	415932.6	741.4727	10.42477	
2009	896959.9	1582.969	21.80959	
2010	344121.3	611.1701	8.787789	
2011	916278.1	1632.067	23.27737	
2012	1010492	1804.834	25.74464	
2013	1097327	1947.158	28.20319	

Nominal prices, * **EUR 1= HUF 304** (as of August 2017).

RD support data

On a Local Administrative Unit level (LAU1, formerly NUTS4) there are **174 small regions**, composed of **3,164** administratively independent settlements.

Total, /km2, /cap support in 2008 and 2013

Methodology – impact assessment

- Issues:
 - the problem of **partial indicators** lack of causality
 - the problem of counterfactual
- Solution:
 - create an 'objective' complex Rural Development Index:
 - Possibilities: PCA/Factor analysis or 'manual' index creation
 - complement it with 'subjective' Quality of Living measures:

net_migr = (inmigr - outmigr)
rel_migr = (inmigr-outmigr)/pop

Methodology – impact assessment

For all 3,164 independent settlements:

- -Group 1: Social and demographic conditions (e.g. mortality rate, birth rate, migration, nursery -kindergarten schools, migration)
- **Group 2: Habitation and living conditions** (e.g. houses built as percentage of existing stock, number of cars/1000cap, taxes paid/cap)
- Group 3: Local economy and employment (e.g. businesses per 1000 habitants, various measures of unemployment)
- Group 4: Infrastructure and environment (e.g. houses connected to sewage system/total number of houses, natural gas, electricity, running water usage, local government services, distance in min to LAU1 centre).
- (Each variable was scaled to 0-100, Groups are arithmetic average of scaled vars. (with or + signs), **RDI** is weighted sum of Groups.)

Finally, data is aggregated to LAU1 level (from 3,164 to 174)

Objective (RDI) and subjective (QoL) levels

Net migration relative to pop in 2008

Net migration relative to pop in 2013

MTA KRTK KTI

Levels of RDI in 2013

Change in the RDI between 2008 and 2013

Methodology – PSM and def. of treated

- RDI and QoL indices allow the use of PSM and creation of counterfactual:
 - We predict the probability of a region being subsidised on the basis of observed covariates for both subsidised and non-subsidised regions
 - sub-regions are selected into treatment and non-treatment groups that have similar potential outcomes (*rdi*, *relative* and *net migration* scores)
- All sub-regions received some development support.
- A necessarily subjective rule had to be imposed to differentiate between treated and non-treated regions
- 2 definitions for treated: support intensity was higher than 2/3 of the yearly median (Msub) and mean subsidy (Asub)

Results - ATT

	MSub/tot	MSub/cap	MSub/km2
rdi	37.033	35.938	38.07
rel_migr	-0.003	-0.004	-0.003
net_migr	-92.521	-135.24	-84.212
	ASub/tot	ASub/cap	ASub/km2
rdi	37.224	35.243	38.188
rel_migr	-0.003	-0.004	-0.003
net_migr	-30.786	-139.47	-84.04

Results – Diff in Diff

	MSub/tot	MSub/cap	MSub/km2	ASub/tot	ASub/cap	ASub/km2	
	Baseline: 2008, End: 2013						
rdi	-3.261	-0.289	-5.469	0.186	2.443	-2.888	
rel_migr	-0.002	0.001	-0.002	0	0.001	-0.003	
net_migr	-74.52	28.85	-120.71	39.29	15.96	-167.03*	
	Baseline: 2008 - 2009, End: 2012 - 2013						
rdi	-0.631	0.671	-2.215	0.717	-0.723	-2.567	
rel_migr	-0,02	0	-0.001	-0.001	0,001	-0.002	
net_migr	-36.24	-23.11	-92.3	-38.42	39.43	-113.9*	
	Baseline: 2008 - 2010, End: 2011 - 2013						
rdi	-3.741*	0.527	-1.696	1.217	2.145	-0.917	
rel_migr	-0.002**	0.001	-0.002**	0	0.001	-0.001	
net_migr	-54.786	43.183	-102.92**	-53.06	23.27	-88.75**	

Conclusions and future research

- The main contribution to the literature of this paper is its assessment of (almost) an **entire programming period**
- focus on the overall effects of RDP at a disaggregated level
- use three development indicators, along with six definitions of subsidies.
- we find considerable variation in terms of the level of subs received by regions during the period under analysis.
- it is very difficult to identify any impact of European development subsidies, and not only because estimates are sensitive to the chosen support variables.
- very few estimations revealed significant impacts, these were negative instead of the expected positive.

Conclusions and future research

- Very few research (papers) to use as benchmark
- Exception Michalek (2012) similar conclusion

Possible explanation of no impact

 \mathbf{O}

- Methodological:
 - issues with local variables and aggregation
- Econometrics:
 - use of continuous treatment variable
 - Use bounds approach (see Craig's paper)
- Political:
 - The most unfortunate and difficult to correct

