Demand for secondary school characteristics Evidence from school choice in Hungary

Carla Haelermans¹, Zoltán Hermann², Thomas Wouters³

¹Maastricht University, ²Insitute of Economics(Budapest) ³KU Leuven

Maastricht, February 27, 2018

- Does school quality and school composition affect students' choices?
- Do parents pay attention to the level of the school, or rather to school quality (learning gains)? Are these preferences heterogeneous along (parental) social/educational lines?
- What are the preferences for school (socio-economic) composition?

< □ > < 同 > < 回 > < 回 >

- Many countries have a system of school choice. School choice gains popularity (e.g. controlled school choice in the US)
- School choice is assumed to increase welfare and even quality (through competition)
- Detrimental effects on equality of opportunity (if disadvantaged students end up in lower quality schools)

イロト イボト イヨト イヨト

- Application data (ordinal preference lists instead of realised choices)
 - · Not directly affected by schools' decisions
 - Hungarian case: high-stakes decision
 - Rank-ordered logistic regression
- School choice in upper secondary education
- Distinction between school quality and level

< □ > < 同 > < 回 > < 回 >

Overview

Introduction

- Previous literature
- Educational institutions in Hungary

2 Analysis

- Data and method
- Basic model
- First vs subsequent choices
- Control function approach

Conclusion

э

< □ > < 同 >

Evidence on determinants of school choice (Hastings et al, Burgess et al) indicates the following determinants:

- Distance to home/work
- School quality
- School denomination (religion/church schools) & pedagogical philosophy
- School composition (ethnic/SES)
- Teachers, school management
- Odds of admission
- Availability of information

• • • • • • • • • • •

12		No continue la consecta de ma	A sector is track			
10	vocational	track	Academic track			
9	SCHOOL					
8						
7	General school (Primary and lower secondary education)					
6						
5						
4						
3						
2						
1						

Figure: The Hungarian school system

2

メロト メタト メヨト メヨト

Students apply to programs (we will observe tracks)

- · Choice among educational programs within tracks within schools
- Students submit a rank-ordered list of preferences
- Schools rank students
 - Decision on a cutoff entry score
 - Priority for higher test scores
- Assignment in a centralized manner
 - No incentive problems for students while ranking schools
 - A second round of assignment for those not matched (not observed)

< □ > < 同 >

- Administrative data for a single cohort (2006)
- Matched data from three datasets (75% of students)
 - · Secondary school application register: rank-ordered lists by students
 - National Assessment of Basic Competences
 - Math and reading test scores
 - Individual characteristics
 - Travel time data (public transport)

(日) (四) (日) (日) (日)

Individuals maximize a simple (linear) utility function of the form:

$$U_{is} = \alpha_i + \beta_1 \text{TravelTime}_{is} + \beta_2 \text{SES}_i \text{TravelTime}_{is} + \gamma_1 \text{Quality}_s + \gamma_2 \text{SES}_i \text{Quality}_s + \delta_1 \text{Level}_s + \delta_2 \text{SES}_i \text{Level}_s + \zeta_1 \text{SchoolSES}_s + \zeta_2 \text{SES}_i \text{SchoolSES}_s + \epsilon_{is}$$
(1)

 $\epsilon_{\it is}$ is IID according to extreme value type 1 distribution.

< □ > < □ > < □ > < □ > < □ >

æ

- Individuals have strict preference orderings over schools
- e.g. a choice set with 3 schools A, B, C
 - $A \succ_i B \succ_i C$
 - $U_{iA} > U_{iB} > U_{ic}$
- Probability we observe this ordering is $\pi_{iA}^{A,B,C}\pi_{iB}^{B,C}$, with $\pi_{is}^{S} = \frac{e^{V_{is}}}{\sum_{j \in S} e^{V_{is}}}$ This is the probability that school s is chosen from set S.

(日) (四) (日) (日) (日)

We estimate a value-added model.

$$T_{is}^{10} = \beta_1 T_{is}^8 + \beta_2 (T_{is}^8)^2 + \beta_3 (T_{is}^8)^3 + \delta X_{is} + \theta_s + \epsilon_{is}$$
(2)

< □ > < 同 >

- T: test score in grade 8 or 10
- X: gender, SES, parental education, number of books
- θ_s : school quality random effects, shrinkage estimator. We standardise this measure.

- School level: school mean of grade 8 scores (mean of math and reading) (standardised)
- School SES composition: share of parents with (at least 1) secondary education degree (mixed or academic track) (0-1)
- Distance: travel time between towns (public transport) (hours)
- High SES: parents with (at least 1) secondary education degree (mixed or academic track) (0/1)
- Test score: grade 8 test score (standardised)

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Feasible choice sets

- Students do not rank all schools
- We only consider schools within 90 minutes of travel time
- We also add schools to the choice set
 - For each student, we determine a radius (based on the most distant school)
 - All schools within this radius (which are always within 90 minutes of travel time) are included in the feasible choice set
 - · We only consider tracks the student has ranked explicitly

Figure: Adding schools that were not ranked to the choice set

First analysis: including the 4 main variables: travel time, SES composition, school level and school quality.

	All students		
Travel time	Coeff (SE) -3.136*** (0.01)		
School SES composition	-1.748***		
	(0.02)		
School level	0.860***		
School quality	-0.136***		
	(0.02)		
R^2			
N	4240322		
*** $p < 0.01$; ** $p < 0.05$; * $p < 0.10$			

Table: Basic model including only the 4 main determinants

æ

< □ > < □ > < □ > < □ > < □ >

First analysis: including the 4 main variables: travel time, SES composition, school level and school quality.

	All students	Academic track	Mixed track	Vocational track
	Coeff (SE)			
Travel time	-3.136 ^{`***}	-3.896***	-3.158***	-2.932***
	(0.01)	(0.02)	(0.01)	(0.02)
School SES composition	-1.748***	-1.783***	-1.792***	-1.790***
	(0.02)	(0.05)	(0.05)	(0.06)
School level	0.533***	0.651***	0.689***	0.981 ^{***}
	(0.01)	(0.01)	(0.01)	(0.02)
School quality	-0.022***	-0.154***	0.087 ^{***}	-0.050***
	(0.00)	(0.01)	(0.00)	(0.01)
R^2	. ,	. ,	. ,	
N	4240322	1685460	1621676	933186

*** p < 0.01; ** p < 0.05; * p < 0.10

Table: Basic model including only the 4 main determinants

æ

イロト イヨト イヨト

Now including interaction terms: weak homophily With quadratic terms: higher SES profile is preferred up to some point

	Rank-ordered logit
	Coeff (SE)
Travel time	-2.916***
	(0.01)
High SES $ imes$ Travel time	-0.506***
	(0.02)
School SES composition	-2.206***
	(0.03)
High SES $ imes$ School SES composition	2.028***
	(0.02)
School level	0.354***
	(0.01)
School level $ imes$ Test score	0.663***
	(0.00)
School quality	-0.007**
	(0.00)
School quality $ imes$ Test score	0.040***
	(0.00)
R^2	
N	4206191

*** p < 0.01; ** p < 0.05; * p < 0.10

Table: Basic model with interaction terms

• • • • • • • • • •

First vs subsequent choices

The rank-ordered model weighs all choices equally, irrespective of their rank. We now consider the top-n choice for each student. We consider the probability that a school is chosen from the set, excluding higher-ranked alternatives. The rank-ordered logit the reduces to a conditional logit model.

In general, preferences become less outspoken, the lower the rank of the choices we explore.

	First choice	Second choice	Third choice	Fourth choice	Fifth choice
	Coeff (SE)	Coeff (SE)	Coeff (SE)	Coeff (SE)	Coeff (SE)
Travel time	-2.983***	-2.857***	-2.914***	-2.926***	-2.911***
	(0.02)	(0.02)	(0.03)	(0.05)	(0.07)
High SES $ imes$ Travel time	-0.572***	-0.539***	-0.526***	-0.443***	-0.350***
	(0.03)	(0.03)	(0.04)	(0.06)	(0.09)
School SES composition	-1.855***	-2.175***	-2.321***	-2.577***	-2.885***
	(0.05)	(0.05)	(0.06)	(0.09)	(0.14)
High SES $ imes$ School SES composition	2.359***	2.152***	1.943***	1.787***	1.598***
	(0.04)	(0.05)	(0.05)	(0.07)	(0.12)
School level	0.416***	0.343***	0.316***	0.294***	0.332***
	(0.01)	(0.01)	(0.01)	(0.02)	(0.03)
Test score $ imes$ School level	0.755***	0.696***	0.609***	0.541***	0.471***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)
School quality	0.008	-0.033***	0.001	0.012	-0.011
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Test score $ imes$ School quality	0.043***	0.031***	0.053***	0.051***	0.037**
	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)
R^2					
N	4206191	4152613	4104868	4071042	4055260

Table: Conditional logit on the top-n choice

< ロ > < 同 > < 回 > < 回 >

Omitted variable bias: school composition variables (SES composition and school level), and school quality, may correlate with other (unobserved) school characteristics.

- School level and SES composition: effect may be overestimated
- School quality: less likely to suffer from bias
- Proposed instruments: level and SES composition of students living in the school's town. No suitable instrument for school quality (yet).

Potential solution: control function approach

- Does not require the problem to be linearized
- Other solutions (Berry inversion, BLP) imply working with aggregated data

< ロ > < 同 > < 回 > < 回 >

Two stages

• First stage: regress endogeneous variables on exogeneous ones (including instruments). Save the error terms.

$$Level_{s} = \alpha Level_{s}^{instr} + \beta SchoolSES_{s}^{instr} + \gamma Quality_{s} + \epsilon_{is}$$
(3)

(日) (四) (日) (日) (日)

• Second stage: original regression, but including the control function term (i.e. error term from first stage)

Control function approach: results

	Original	CF (level)	CF (SES composition)		
	Coeff (SE)				
Travel time	-3 136***	-3 222***	-3 222***		
	(0.01)	(0.01)	(0.01)		
School SES composition	-1 748***	(0.01)	2 580***		
beneel 626 composition	(0.02)		(0.08)		
School level	0.533***	-0.253***	(0.00)		
	(0.01)	(0.01)			
School quality	-0.022***	-0.008***	0.029***		
	(0.00)	(0.00)	(0.00)		
Town SES composition	()	1.274***	()		
		(0.05)			
School level (CF)		0.617***			
		(0.01)			
School SES composition (CF)		()	-2.342***		
			(0.08)		
Town level			-0.492***		
			(0.02)		
R^2					
N	4240322	4246565	4240322		
*** $n < 0.01$ ** $n < 0.05$ * $n < 0.10$					

Table: Control function approach: results

2

メロト メロト メヨト メヨト

Conclusions:

- Preferences for school level overshadow preferences for school quality (learning gains)
- School quality is harder to observe than school level and school composition
- Indications for homophily in terms of socio-economic status

Challenges:

• Implementation of control function approach

• • • • • • • • • •