The effect of temperature shocks on health at birth: evidence from Hungary

Tamás Hajdu^a - Gábor Hajdu^{b,c}

^a Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences (*hajdu.tamas@krtk.mta.hu*)
^b Institute for Sociology, Centre for Social Sciences, Hungarian Academy of Sciences (*hajdu.gabor@tk.mta.hu*)
^c MTA-ELTE Peripato Comparative Social Dynamics Research Group

Key takeaways

- 1) Exposure to hot temperature in utero reduces fetal health
- 2) The effects are larger for newborns of low educated mothers
- 3) Climate change is predicted to decrease birth weight and gestation length, and to increase LBW rate and PTB rate

1. Research questions

5. Empirical methods

A) The impact of temperatures on health at birth

- $H_{iyms} = \sum_{k} \beta^{k} T_{iyms}^{k} + \gamma' X_{i} + \eta_{y} + \tau_{sm} + \varepsilon_{iyms}$
- H = health at birth of newborn *i* (born in year *y* and month *m*, at settlement *s*)
- $T^k = N$ of pregnancy days in temperature bin k
- X = characteristics of the mother and the father
- A. How does exposure to hot/cold temperatures during the pregnancy affect health at birth?
- B. Examining the potential impact of the climate change on the newborns' health indicators

2. Live birth data

- Registry of live births of the Hungarian Central Statistical Office
- Administrative dataset that covers all births between 1990-2014
- Information on birth date, health at birth, family background, etc.
- Final sample

- education, age, labor force status, marital status, pregnancy history of the mother
- η , τ = birth year and settlement-by-calendar month fixed effects
- Instrumental variable approach
 - problem: the longer the gestation the higher $T^k \rightarrow$ biased estimation
 - solution: T^k is instrumented by the number of days in T^k that would have been observed if the pregnancy had lasted exactly 39 weeks
- The effects of temperature are identified from interannual variation in temperature after adjustment for time-invariant settlement-specific seasonality and common shocks

B) The impacts of the climate change

$$\mathbf{Y}_{\mathbf{r}} = \sum_{\mathbf{k}} \beta^{\mathbf{k}} (\mathbf{T}_{\mathbf{r}}^{\mathbf{k}} - \mathbf{T}_{\mathbf{b}}^{\mathbf{k}})$$

- Y = the predicted impact of the climate change under the scenario RCP r
- β^k = estimated impact of temperature bin *k* (from part A)
- T_r = the predicted N of days in temperature bin k under the scenario RCP r during a 39-week-long pregnancy
- T_b = the observed N of days in temperature bin *k* between 1990-2014 during a 39-week-long pregnancy

- singleton births with at least 26 weeks of gestation
- almost 2.5 million observations
- Indicators of health at birth (outcome variables)
 - 1. birth weight
- 3. gestation length
- 2. LBW low birth weight (<2500 g)
- 4. PTB -pre-term birth (<37 weeks)

3. Weather data

- European Climate Assessment & Dataset project
- Provide daily weather measures for five large cities from different parts of Hungary
- Interpolated temperature values for other settlements without a weather station
 - inverse distance weighting technique
- Temperature measures for the analysis
 - N of days during the pregnancy when mean daily temperature falls into the following temperature bins (T^k)
 - below -5° C, -5 to 0° C, 0 to 5° C, ..., 20 to 25° C, above 25° C
- Exposure to the temperature bins is matched to each birth by the location

6. Results

A) The impact of temperatures on health at birth

- Strong negative, non-linear relationship between birth weight and temperatures (see Figure below)
 - E.g. the impact of an additional day with average temperature $>25^{\circ}$ C is -0.5 gram

- Similar results for the other outcomes
 - Hot temperature is associated with shorter gestation length, higher LBW rate, and higher PTB rate
- Larger impacts for newborns of low educated mothers

4. Climate change data

- Community Climate System Model (CCSM) version 4
 - one of the climate models that used for the IPCC fifth Assessment Report
- Two scenarios: RCP4.5 and RCP8.5
 - RCP4.5: intermediate increase in greenhouse gas (GHG) concentration
 - RCP8.5: rapidly rising GHG concentration
- Predicted distribution of daily temperatures, 2041-2050
 - averaged the estimations for grid points located within Hungary
- E.g., the N of days per year with avg. temperature >25°C will increase by 7.8 (RCP4.5) to 14.8 (RCP8.5) days from a baseline of 9.6 days

B) The impacts of the climate change (2041-2050)

• The predicted impacts are sizeable: 20-80 % of the effects of programs that aim to provide better nutrition and counseling to pregnant women, or consist of cash transfers (RCP8.5)

The estimated impacts					
	Mother's education	Birth weight (g)	Gestation length (week)	LBW (%point)	PTB (%point)
RCP4.5	Total	-9.3	-0.049	0.34	0.50
	Primary	-10.4	-0.061	0.50	0.72
	Secondary	-9.8	-0.050	0.31	0.51
	Tertiary	-6.6	-0.031	0.18	0.25
RCP8.5	Total	-14.9	-0.084	0.49	0.76
	Primary	-16.9	-0.102	0.66	1.03
	Secondary	-15.7	-0.085	0.49	0.79
	Tertiary	-10.3	-0.059	0.24	0.38

BSPS 2018 - The University of Winchester, 10-12 September 2018

Acknowledgement: This work was supported by the Hungarian National Research, Development and Innovation Office – NKFIH (grant no. FK 124310). Tamás Hajdu was also supported by the Momentum Program of the HAS and the János Bolyai Research Scholarship of the HAS.